Lassonde researchers develop portable cannabis detection device for roadside screening

Assistant Professor Nima Tabatabaei from the Department of Mechanical Engineering at the Lassonde School of Engineering, York University, and his team of researchers at the Hybrid Biomedical Optics (HBO) Laboratory have developed and tested a patent-pending technology for fast, on-site detection and quantification of tetrahydrocannabinol (THC) – the psychoactive substance of cannabis – in saliva. The technology uses thermal signatures of gold nanoparticles attached to THC molecules.

Nima Tabatabaei
Nima Tabatabaei

The advancement in THC detection technology comes at an opportune time. The recent legalization of recreational cannabis in Canada has created a pressing need for rapid and sensitive roadside screening to mitigate driving under the influence.

Using current technologies, detecting THC at legally required limits is time consuming and invasive, as it requires analysis of blood samples in certified laboratories. Tabatabaei’s technology, on the other hand, aims to provide immediate, on-site results to better detect driving under the influence and keep roads safer.

The most accurate commercially available roadside solution, which was recently approved by the Royal Canadian Mounted Police for use in Canada for the detection of impaired driving, is rated for reliable detection of THC concentrations of 25 nanograms per millilitre or greater in saliva (or 5 ng/ml and greater with limited reliably), said Tabatabaei. This does not meet the requirement of new Canadian regulations on drugged driving, Bill C-46 (2 ng/ml in blood).

“In a lab environment, our thermo-photonic technology has a demonstrated detection limit of 1 ng/ml,” said Tabatabaei. “Our next target is to reduce the size and cost of the technology by employing low-cost cell phone attachment infrared cameras and optimizing system parameters. We aim to achieve a THC detection threshold of better than 2 ng/ml in oral fluids as part of a commercially viable and portable device.”

Initially, the team was able to work on the prototype’s development and testing thanks to a $50,000 grant from York University’s Vision: Science to Applications (VISTA) program. Due to the demonstrated viability of their innovation in lab environment, and support from Innovation York, the team secured additional funding by way of a $125,000 research grant from Natural Sciences & Engineering Research Council of Canada’s Idea to Innovation Program. This grant will help the team translate this technology from benchtop to roadside.