York professor takes a fresh look at climate change mitigation

image shows a forest and stream

York University Faculty of Environmental & Urban Change Professor Ellie Perkins co-authored a new paper in the Journal of Global Environmental Change investigating the role of quality of governance, social capital and equality as preconditions for enacting climate policies.

Ellie Perkins
Ellie Perkins

Climate change mitigation is typically assessed through the lens of technologies and policies; however, the paper “Designing a virtuous cycle: Quality of governance, effective climate change mitigation, and just outcomes support each other” investigates the role of governance and social capital in the creation of effective climate policies.

The researchers reveal that the quality of governance underpins social capital, interpersonal trust, equality and effective climate change mitigation policies. Conversely, socioeconomic inequalities were found to reduce trust and political engagement, and thus compromise the overarching goal of climate change mitigation. 

“My ongoing research and teaching on climate justice at all scales, from local to global, relate closely to the participatory, equity-oriented focus of this new paper,” says Perkins.

The team of researchers involved, including Felix Creutzig, a professor of sustainability economics at the Technical University of Berlin, used international data, estimates of social trust and other empirical evidence to demonstrate the correlations among social trust, good governance and effective climate change mitigation.

Perkins worked with some of the co-authors of this paper previously, on the UN Intergovernmental Panel on Climate Change’s 6th Assessment Report, which was published last year and documented the close interrelationship evident in peer-reviewed literature between socioeconomic, equity-focused policies and successful climate policies.

“We traced several paths that help to explain this link, mostly involving social trust in fair governance, which is necessary for people to support and advance the extensive socioeconomic and political transformations involved in the energy transition beyond fossil fuels,” says Perkins.

“International colleagues bring diverse perspectives and insights on the central climate justice challenge,” she explains. “The high-emitters most responsible for climate chaos are those least likely to suffer its impacts.”

In addition, a “lack of social capital and impartiality is a major barrier to climate change mitigation in many countries,” the paper states. “As climate change mitigation is a global public good that can only be achieved together, this is troublesome news.”

The researchers are hopeful that their findings will help lead to positive change in future climate mitigation practices, with social systems as a core focus of policies and assessments, and international efforts to increase the quality of governance globally. Non-policy streams of climate action, such as renewable energy, should also be considered as a powerful tool.

New Lassonde facility explores how climate impacts infrastructure

New York City parks and public infrastructure stock image banner photo

Professors from York University’s Lassonde School of Engineering have established the Climate-Data-Driven Design (CD3) Facility for Built Infrastructure in order to become Canada’s leading field-testing laboratory for studying the effects of climate variability on the behaviour of materials, ensuring more resilient infrastructure in the future.

Usman Khan
Usman Khan
Matthew Perras
Matthew Perras
Liam Butler
Liam Butler

The CD3 facility project is shepherded by Liam Butler, Matthew Perras and Usman Khan from the Civil Engineering department through funding support from the Canadian Foundation for Innovation’s (CFI) John R. Evans Leaders Fund (JELF) and will look at how climate conditions such as chilling snow, rain, intense humidity and heat can negatively influence the behaviour of infrastructure materials used in systems such as roads, bridges and tunnels.

The CD3 facility, located at York’s Keele Campus, will allow for outdoor testing and monitoring of natural and infrastructure materials to evaluate their performance under realistic conditions, using advanced sensing and data analysis techniques. Using existing indoor lab facilities and artificial intelligence (AI) methods, data collected from outdoor experiments will be used to interpret the effects of climatic conditions on the tested materials and develop models to predict their future performance over a variety of time scales and climate change scenarios.

Experiments performed at this facility will also establish critical information about the behaviour and long-term performance of emerging infrastructure materials, allowing for proactive measures to be taken when developing the next generation of infrastructure.

It will also provide local and global industry partners with an innovative space to test infrastructure materials, while advancing the reach and reputation of the facility and School – collaboratively driving solutions to some of the most pressing infrastructure-related challenges in Canada and around the world. Furthermore, student training and recruitment at Lassonde will allow for experiential learning opportunities that promote skill-building and inclusion.

“There are very few facilities like this in the world,” says Butler. “We want to leverage Lassonde’s state-of-the-art High Bay Lab for testing structural materials but also have the capability for testing in an outdoor setting. This way we can understand how our infrastructure materials behave in realistic conditions and therefore, develop methods for improving their design.”

Those interested in learning more about the CD3 Facility at York University or to explore future testing and research collaborations are encouraged to get in touch with Butler (liam.butler@lassonde.yorku.ca), Perras (mperras@yorku.ca) or Khan (usman.khan@lassonde.yorku.ca).

Nancy Archibald tells grads: ‘The work is waiting’

Nancy Archibald

During the June 22 convocation for York University’s Faculty of Science, longtime CBC filmmaker and producer Nancy Archibald urged graduands to lend their newly gained knowledge and fresh perspectives to righting the future.

At the end of her address to graduands and proceeding the introduction of Archibald, Alice Pitt, interim vice-president of equity, people and culture at York, issued a challenge. “I want to end my remarks by encouraging each of you to think about what matters to you and what contribution do you want to make the world.”

Alice Pitt, Nancy Archibald, Kathleen Taylor
Interim Vice-President Equity, People and Culture Alice Pitt, Nancy Archibald and Chancellor Kathleen Taylor

Those words anticipated the speech delivered by Archibald, the recipient of an honorary doctor of laws degree, who has made significant contributions to the world’s understanding of the world and, especially, the threats it faces. Over a 35-year career as a filmmaker with the CBC, notably the long-running series The Nature of Things, she has made over 40 science and nature documentaries, as well as produced more than 60 films, many with the goal of raising awareness of environmental issues before others in the media did.

During her speech, Archibald recounted her journey and how it began at 21, when an aunt passed and left her $500 in her will. Archibald decided to leave for Europe to see more the world. Six years later she came home, her life changed by travel, and began looking for work.

“I’d always wanted a job I could look forward to and I thought was worth doing. That was important,” she said. She got one at the CBC, soon making programs meant to educate the public about a variety of scientific subjects, including chaos theory, human development from birth to death, aspects of evolution and astronomy. Along the way, she found herself nurturing a budding interest: “I was finding my way to what I passionately cared about: nature and the issues surrounding it,” she said.

Among one of her most formative experiences, was when she and her crew traveled to the Amazon in the 1990s to do a story on the burning of the rainforest. Before her arrival, she had expected – despite the destruction – to see some remnants of the rich ecosystem that rainforests have to offer. She was in for a shock. “We never saw rain forest, although we were where it was meant to be. We saw blackened trees and trees on fire,” she said. They saw too hundreds of local and tribal people who were impacted. One town had attempted to replace their missing rain forest with skinny trees and pots.

The film resulting from the experience of capturing the ecological devastation in the Amazon was called The Road to the End of the Forest and when it aired, thousands of letters came in from viewers shocked, as well as wanting to know more and what they could do. Since then Archibald – in and outside of her work – has raised awareness around the threats to the world’s environments.

As she neared the end of her speech, Archibald encouraged graduands to seek out mentors and collaborators – something she said she benefited greatly from. “Continuing to learn through the lives and experiences of people you admire is enriching. Seeking advice from people you can believe and who give guidelines generously is a good habit,” she said.

A female trailblazer, as the first and only female executive producer at the CBC from 1973 to 1981, Archibald also issued an important call to graduands to protect the rights of not just women, but those afforded by democracy as a whole. “Keep an eye on your freedoms. For women, because they’re recent, but for everyone else, too. We all must take notice and keep watch, because what we’re seeing right now in North America and Europe is a strong movement away from the kind of democracy we’ve taken for granted and that we thought would last forever. And when democracy goes, freedoms can shift,” she says.

Archibald ended with a moment of optimism and well wishes for the graduating class. “The work is waiting. You have new eyes. You’re armed now with critical thinking mind and knowledge. And if you use them well – to speak up, to help forge new ways of living, a more humane and more equitable world – you will be people living meaningful lives. I wish you adventure and fulfillment on this wondrous planet. Its gobsmacking beauty will sustain and inspire you if you let it and make you want to live differently to bring it back, to protect it, and allow it – and you – to thrive.”

Four projects receive funding through York’s Sustainability Innovation Fund

UN SDGs

A selection committee from the President’s Sustainability Council identified projects that advance climate action at the University for the second round of funding from York’s Sustainability Innovation Fund (SIF). 

The Sustainability Innovation Fund provides funding to support campus sustainability projects that help build a culture and practice of sustainability at York University and advance the United Nations Sustainable Development Goals (SDGs). This round of funding awarded over $50,000 to projects that contribute to the University’s goal of reducing greenhouse gas (GHG) emissions by 45 per cent by 2030 and achieving net zero and advancing SDG 13 (Climate Action).  

The winning projects reflect various ways to utilize the campus as a living lab and address direct or indirect emissions through activities such as commuting, energy use, food consumption, waste management, behaviour change, awareness and engagement, and nature-based solutions.  

“By supporting these projects, we are making significant strides towards creating a more sustainable community at York University and beyond,” said Mike Layton, chief sustainability officer. “We’re also breaking down financial barriers to empower students, staff and faculty to become agents of positive change and take meaningful steps to reduce our impact on the planet.” 

The four winning projects are:  

Living Learning Community – Sustainability  

  • Project team: ​Aaron Brown and Melanie Howard​, Residence Life, Division of Students ​  
  • Residence Life will pilot a Living Learning Community (LLC) specific to sustainability during the 2023-24 academic year. The program seeks to address SDG 12 (Ensure sustainable production and consumption patterns) and 13 (Take urgent action to combat climate change and its impacts).

York University Composting Centre  

  • Project lead: John Simoulidis 
  • Project team: Andrew Maxwell (Lassonde School of Engineering), Dean J.J. McMurtry (Faculty of Liberal Arts & Professional Studies (LA&PS)), Dean Alice Hovorka (Faculty of Environmental & Urban Change (EUC)), Tom Watt (Ancillary Services), Calvin Lakhan (EUC), Mark Winfield (EUC), Karl Karvonen (Facilities Services), Sabine Dreher (Glendon College), Nicolas Cabal (student), Ronon Smith (student), Sabrina de Losada Casab (student)  
  • This project began through the first round of SIF. It will continue to develop an on-site composting centre to divert organic waste away from landfills, process it on site and turn it into useful compost that can be applied at Maloca Garden (Keele) or Glendon Garden, two spaces well situated as ”living labs.” 

Green Career Fair: Exploring Climate Careers to Achieve Net Zero  

  • Project leads: Lauren Castelino, Joanne Huy and Rosanna Chowdury (EUC) 
  • This project will host an annual Green Career Fair at York University to engage students and GTA youth. The fair will lead discussions on transitioning to net-zero emissions and showcase green career paths and organizations championing initiatives towards this goal. It aims to prepare underrepresented youth for green careers through nurturing a stronger sense of connection, inclusion and well-being.  

Determining the merits of large battery electricity storage at York University  

  • Project lead: Tim Hampton (EUC) 
  • Project team: Mark Winfield (EUC), Hany Farag (Lassonde), Steven Prince (Facilities Services)  
  • This project will assess the desirability (environmental impact reduction), feasibility (fit with existing campus infrastructure and staffing) and viability (whether the system will reduce overall costs) of a large battery storage system at York University.   

The next round of SIF funding is planned for Fall 2023. To learn more about the Sustainability Innovation Fund, visit the Office of Sustainability website

Microlecture Series in Sustainable Living: Building a better future with Usman Khan

Globe and York branded box for the Microlecture Series launch

York University’s free Microlecture Series in Sustainable Living is an innovative, interdisciplinary and open access program that gives participants the opportunity to earn a first-of-its-kind digital badge in sustainable living.

Throughout the Microlecture Series in Sustainable Living, six of York University’s world-renowned experts share research, thoughts and advice on a range of critical topics related to sustainability. Their leadership and expertise, however, extends beyond the six-minute presentations.

Over the next several weeks, YFile will present a six-part series featuring the professors’ work, their expert insights into York’s contributions to sustainability, and how accepting the responsibility of being a sustainable living ambassador can help right the future.

Usman Khan
Usman Khan

Part three features Associate Professor Usman Khan.

Usman Khan is an associate professor of civil engineering at the Lassonde School of Engineering. His research interests lie in water resources engineering, focusing on urban hydrology, including flood risk assessment and uncertainty analysis, sustainable water resource management and infrastructure, and the impacts of climate change on these systems. Khan specializes in developing novel machine learning and artificial intelligence methods for various engineering applications. The role of civil engineering in creating vibrant, liveable and sustainable cities is a strong motivator for Khan. He is committed to using his professional practice to meet the challenges that face the urban environment. 

Q: What does it mean to be a “sustainable living ambassador” and how does it foster positive change? 
A:
Being a “sustainable living ambassador” means, first, that you’re committed to learning about global sustainability problems, such as the climate crises, and second, that you’re committed to creating positive change in your community – either through direct action or through advocacy. As more people become ambassadors, I hope the discussions about sustainability on campus increase and that these discussions then lead to positive change on our campuses. Sustainability is an integral component of our University’s mission (University Academic Plan) and therefore, I think the York community should be well-versed in the topic.

Q: What would make you most proud for viewers to take away from your lecture, and the series as a whole?
A:
The role of engineers in designing and creating a more sustainable world is under-appreciated. I hope that viewers who watch my lecture understand how important a role engineering design can have on sustainability in our communities. The design of engineering infrastructure – even relatively simple technologies to manage stormwater – influences each component of sustainability: environmental, social and economical. I want viewers to learn that, indeed, there are more sustainable options for stormwater management, and deciding who receives this sustainability benefit is an important decision. We should be demanding more sustainable solutions.

Q: Equity and equality are a common theme throughout these sustainability lectures. Why is that such a critical component of sustainability? 
A:
We need to make sure that any new technologies and systems that are designed and implemented are providing benefits to those who need them the most. In my work, this means providing engineering solutions, for example for flood risk reduction, to people who are most at risk and disadvantaged.

Q: Are there changes you’ve made in your work at York that other York community members can learn from? 
A:
I am fortunate to be able to commute to campus via public transport – despite two subway stations and bus connections, I know it is not easy for everyone in the York community to be able to do this. Since the transport sector is responsible for 25 per cent of greenhouse gas emissions, it is important to me personally to commute using low emission modes.

I am not convinced yet that paperless assignments are a better route than traditional approaches. I am wary of the size of emissions from increased online education (online assignments, streaming lectures, life-cycle cost of all our new devices, etc.). Much of York’s online infrastructure is powered by data centres (off campus) which use a huge amount of energy to store all of our assignments and data in “the cloud,” and host all of our Zoom lectures. I would encourage community members to think about these “hidden” emissions when they are participating in academic life on campus.

Q: How do you view collective responsibility vs. personal responsibility in creating a more sustainable future?
A:
This is a difficult question to answer, and I am not an expert in this area. I think that personal responsibility alone cannot be used to address the climate crises and sustainability more broadly. For example, substantially reducing our emissions requires a fundamental change in our systems, and small, personal actions are not the path to this change. Heavily focusing on these small, personal changes, takes attention and energy away from the systemic change needed for a more sustainable future. Our collective attention should be on large-scale, system-wide solutions that are urgently needed.

Q: How is York leading the way towards a more sustainable future? 
A:
As a university, York’s strength in creating a more sustainable future lies in its role and responsibility in training the next generation of leaders and innovators. Having sustainability embedded in its academic curriculum, research enterprise, and in operations, means that thousands of students are exposed to new ideas and expertise in sustainability every year. These students, with this new knowledge, will be the foundation for the system-wide change that our planet needs. 


Visit the Microlecture Series in Sustainable Living to see Usman Khan’s full lecture, as well as those by the other five experts, and earn your Sustainable Living Ambassador badge. Watch for part four of this series in an upcoming issue of YFile. For part one go here, and part two go here.

Research discovers air quality monitoring stations collect critical biodiversity data

Flock of birds

An international team of researchers – including York University Assistant Professor Elizabeth Clare – has found that data in the form of environmental DNA (eDNA) is being collected globally by ambient air quality monitoring stations. The discovery is a gamechanger for global efforts to protect and promote biodiversity.

“One of the single biggest issues facing the planet today is the accelerating loss of biodiversity,” says Clare, who was a corresponding author on the paper published in the journal Current Biology under the title “Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales.”

“This could be a treasure trove of biodiversity data. What we found by analyzing filters from these monitoring stations is astonishing. In just two locations, we found eDNA evidence for more than 180 different plants and animals.” 

“The potential of this cannot be overstated. It could be an absolute gamechanger for tracking and monitoring biodiversity,” says Joanne Littlefair of Queen Mary University of London, United Kingdom, and first author of the published paper. “Almost every country has some kind of air pollution monitoring system or network, either government owned or private, and in many cases both. This could solve a global problem of how to measure biodiversity at a massive scale.”

Elizabeth Clare

Until now, it was thought that the infrastructure for monitoring biodiversity at national and global scales did not exist. Previously, no one had considered that these air quality monitoring stations could be collecting and storing eDNA data on birds, bees, ticks, fungi, insects, plants and mammals across the globe as a byproduct of their regular function monitoring atmosphere pollutants and dust. But it is exactly what’s needed to monitor biodiversity at a scale that’s never been possible before. 

According to the World Wildlife Fund’s Living Planet Report, there has been a 69 per cent decline in wildlife populations since 1970. These air quality stations could potentially tap into the decades of historic eDNA biodiversity data on filters squirrelled away for years. 

Governments, scientists and environmental agencies around the world have called for large-scale, standard methods of tracking biodiversity in real time. It has, however, been an impossible task, with no standardized approach and no deployed infrastructure proposed – until now.  

The discovery that these air monitoring stations could be collecting eDNA is even more surprising because they may have been quietly doing this all along.  

It wasn’t until researchers, including Clare and Littlefair, proved it’s possible to determine which species are present using eDNA sampled from air, that scientists at the UK’s National Physical Laboratory (NPL), who operate the national air quality sampling grids, realized the potential of what they already had. James Allerton and Andrew Brown at NPL contacted Littlefair and Clare wondering if the national air quality monitoring network in the U.K. was collecting eDNA during normal operation. Together, the unlikely new collaborators have their first answer: a resounding yes. 

“We were routinely collecting particulate matter looking to measure pollutants in air but when we saw the work of Clare and Littlefair, we realized maybe we were sitting on something much more valuable,” says Allerton. 

The team set up a test at an air quality station in London outside a large urban park, collecting samples for an hour, a day and a week, and compared them to eight-month-old samples from a public station in Scotland. 

At Queen Mary University of London, Littlefair handled the samples, while Clare and graduate student Nina Garrett analyzed the data at York University.  

“We were surprised by the diversity of life we were able to survey with one approach, almost unheard in this field of science. In these two locations, we simultaneously detected the eDNA of 34 bird and 24 mammal species, a wide variety of insects, crops, pathogenic fungus, lovely wildflowers, ornamental garden plants and grasses,” says Clare.  

“We found species of interest, such as hedgehogs, along with badgers, deer, dormice, little owls, smooth newts, songbirds and 80 different kinds of woodland trees and plants – oak, linden, ash, pine – it was all there collected on these tiny filters. It’s unbelievably exciting.” 

It represents a mechanism to measure biodiversity on land in a standardized repeatable way across entire countries, continually, every day, every week at thousands of locations.  

“The beauty of the idea is we are making use of something that already exists,” says Brown, who operates the network at NPL. “If networks of air samplers around the world are all collecting similar material – just as a part of their regular functioning – it’s an incredible resource.”  

The team is now trying to preserve as many samples as possible with eDNA in mind. “We do not yet know the true value of these samples, but as they are collected, they could provide an unprecedented view of our natural world. The scale of repeated samples could give us the elusive biodiversity time series data and the ability to measure terrestrial species dynamics in a high-resolution form never considered for biodiversity monitoring before,” says Clare.  

As Littlefair says: “It will require a global effort to collect and evaluate these samples, but this is an extraordinary opportunity to take advantage of a pre-existing, global infrastructure that has been collecting standardized eDNA data for decades and until now, we simply haven’t realized the resource existed.” 

See more ways York University is making headlines at News @ York.

EUC professor’s book pioneers psychoanalytic examination of crisis-prone capitalism

Earth marble wrapped in bandages and overheating on black backdrop

“Why is it that, despite the fact that we live in an ‘information economy,’ despite the fact that we are well aware of sweatshop labour, increasing inequalities and climate crisis,” Faculty of Environmental & Urban Change Professor Ilan Kapoor ponders, “we continue to be so invested in our global capitalist system?”

Ilan Kapoor closeup portrait
Ilan Kapoor

In his latest book, Global Libidinal Economy (Suny Press, 2023), Kapoor – along with co-authors Gavin Fridell, Chair of Global Development Studies and research professor at Saint Mary’s University; Maureen Sioh, associate professor in the Department of Geography at DePaul University; and Pieter de Vries, international development research liaison for Wageningen University and Universidad de Antioquia – supplants traditional economic wisdom and emphasizes the often overlooked role that unconscious human desire plays in driving overconsumption and – by extension – environmental and humanitarian crises.

“Conventional political economy assumes the individual as an autonomous, rational, self-interested and advantage-maximizing subject. Neoclassical economics, for example, is based on the idea of a self-regulating market that operates under the ‘invisible hand’ of supply and demand,” Kapoor explains.

Widespread though this understanding of market forces may be, however, Kapoor asserts that such a perspective is ultimately limited, failing to describe how so-called rational actors can understand the regrettable consequences of unmitigated consumption, while simultaneously participating in such destructive, and eventually self-destructive, behaviours. In order to explain this contradiction, Kapoor and his peers introduce the concept of “the ‘libidinal,’ [which] plays a critical role,” as a primary motivator of consumption, rather than a negligible, haphazard influence.

“Libidinal economy is founded on the notion of a desiring subject, who obeys the logic not of good sense, rationality and self-interest, but rather excess and irrationality,” Kapoor says. “Desire, as it is conceptualized in psychoanalytic theory, is insatiable, which is what helps explain the relentlessness of capital accumulation and profit maximization. So, it is the irrationality and excess of desire that we think can help us understand such phenomena as overconsumption, excessive waste and environmental destruction to the point of imperiling not only accumulation but life itself.

Global Libidinal Economy (2023)
Global Libidinal Economy (2023)

“My co-authors and I claim in this book that it is because late capitalism fundamentally seduces us with such things as cars, iPhones, fast food, and media spectacle … as a result of which we end up fetishizing capitalism, loving it, in spite of knowing about the many socioeconomic and environmental problems associated with it,” he adds.

As a teacher of global environmental politics and international development studies, Kapoor approaches these subjects through the lenses of psychology and critical theoretic philosophy, encouraging his students and peers to debate trends in global development in terms of race, gender, class and unconscious bias.

“I am interested in those elements of our lives that are either hidden away – what psychoanalysis calls ‘repression’ – or are in plain sight but unacknowledged – that is, ‘disavowal,’” he says. “My last three books have focused on this repressive and disavowed role played by unconscious desire in global politics and development. Our [new] book builds on that project by examining the significant part played by unconscious desire in political economy.”

Officially published on May 15, Global Libidinal Economy will make it’s ceremonial debut at Authors meet Critics as a part of the 2023 Congress of the Humanities and Social Sciences at York University on May 30.

Though intimately familiar to Kapoor and his co-authors, the conception of libidinal economy introduced in the book is now making waves in environmentalist and economist circles, being praised in early reviews as innovative and expansive, yet broadly accessible and concise.

To purchase a copy or see more information and reviews on Global Libidinal Economy, visit the publisher’s website.

Click here for details on the launch of Global Libidinal Economy and the Authors meet Critics event.

Risk and Insurance Studies Centre receives $11M grant

Wildfire in the forest

Contributed by the Natural Sciences and Engineering Research Council of Canada Alliance (NSERC), the funding will go towards developing better ways of managing risk and protecting Canadians from increasing threats, such as pandemics, climate catastrophes and financial crises.

Professor Edward Furman of the Faculty of Science at York University leads the team at the Risk and Insurance Studies Centre (RISC) that will use the grant over five years for a new program called New Order of Risk Management (NORM): Theory and Applications in the Era of Systemic Risk. NORM looks to address an acute need for a fundamental transformation in how people think about and manage that risk. 

Edward Furman

“Risk management is key to promoting economic growth and improving welfare in Canada and in other Organization for Economic Co-operation and Development (OCED) countries by taming conventional risks, but it has not had the desired results in today’s increasingly interconnected world. In fact, some call it a failure,” says Furman. “We hope to lead a paradigm shift around what constitutes best practices and regulation for systemic risk, one that has a broader view of what risk entails and that encompasses the complexity of its systemic nature.” 

Given recent socioeconomic, demographic, technological and environmental changes, the researchers say change is overdue. 

Systemic risks, such as the COVID-19 pandemic and the global financial crisis which started in 2007, often spill across socioeconomic boundaries, disproportionately impacting vulnerable populations and magnifying social inequities. The pandemic has already driven Canada’s annual deficit to $348 billion and its national debt is on target to hit $1.2 trillion, while the global financial crisis resulted in a severe recession with sharp declines in national gross domestic product. 

Climate change is creating multiple systemic risks as sea levels rise, wildfire season becomes longer with a greater potential for catastrophic fires and extreme weather events increase, such as flash flooding and storm surges, which can result in widespread devastation to coastal and inland communities in Canada and globally.  

A better understanding of systemic risk is needed, says the NORM team, which includes York Professors Jingyi Cao of the Faculty of Science, Ida Ferrara of the Faculty of Liberal Arts & Professional Studies, Dirk Matten of the Schulich School of Business and Shayna Rosenbaum of the Faculty of Health, as well as professors from University of British, University of Toronto, University of Waterloo and Western University. 

With their industrial collaborators, the NORM team will develop novel theories, operational tools and regulatory mechanisms to address the increasing systemic nature of risks, while also accounting for unequal susceptibility to systemic risk, pursuing equity and building resilience.  

“NORM’s impacts mean not only an academic breakthrough in how we conceptualize systemic risk, but also fundamental transformations in how we manage and govern this new type of risk more effectively through strategies that reflect and consider equity and vulnerability,” says Furman.

Systemic risk is a global threat. NORM brings exceptional depth and breadth of relevant scholarly expertise from actuarial mathematics, business, economics, psychology and statistics together with industry collaborators, including Sun Life Financial, Canada Life, CANNEX Financial Exchanges, Aviva Canada and Wawanesa Insurance, to tackles the issues. 

Learn more at News @ York.

York satellites headed to space

Satellite in space

By Alexander Huls, deputy editor, YFile

One CubeSat – a square-shaped satellite the size of a Rubik’s cube – created by York University students, and another with hardware supplied by students, will launch from the Kennedy Space Center and be placed in orbit by International Space Station astronauts.

Zheng Hong (George) Zhu
George Zhu

Funded by the Canadian Space Agency (CSA), since 2017 the Canadian CubeSat Project (CCP) has provided the opportunity for students to gain greater access and experiential learning to better prepare for careers in the aerospace industry by designing and building their own satellites.

“In the past, students who wanted to learn the design of space instruments and satellite technology never had the hands-on opportunity to build, launch and operate their own. Everything was on paper. This gives them opportunities,” explains Zheng Hong (George) Zhu, director of the Space Engineering Design Laboratory at York’s Lassonde School of Engineering.

Zhu led the team of students who created an entirely York-made satellite set to enter space this summer. The Educational Space Science and Engineering CubeSat Experiment (ESSENCE) is the first satellite to be designed and built mainly by undergraduate students across engineering programs at Lassonde. A previous York-made satellite was launched in 2020, but was designed, built, integrated and tested by graduate students led by Zhu.

The ESSENCE carries two science payloads expected to contribute to understanding of the effects of climate change, aligning the project with the York University Academic Plan 2020 – 2025, and the School’s dedication to the United Nations Sustainable Development Goals (UN SDGs).

The first payload is a high-resolution 360 degree by 187 degree fisheye camera which will be used to capture images of Canada’s Arctic Region from a height of 400 km to monitor the thawing of permafrost and Arctic ices. The camera can also capture images of stars and space debris. The team will collaborate with scientists at Defense Research and Development Canada to observe and monitor space debris with these images. The second payload is a proton detector, developed by the University of Sydney in Australia, which will collect data on energetic solar protons from solar storms in low Earth orbit, providing insights into the impact of climate change on Earth.

The ESSENCE was a collaborative effort between students, four co-investigators from Lassonde (Franz Newlands, Mike Daly, Andrew Maxwell and Alexsander Czekanski), as well as strategic partnerships with the Toronto Metropolitan University (TMU) and the University of Toronto Institute for Aerospace Studies (UTIAS), which provided novel attitude control algorithms to point the camera in desired directions.

The ESSENCE Satellite team
The ESSENCE CubeSat team saying goodbye to their satellite before it was shipped off for launch preparation

The second CubeSat to be launched into space this summer, thanks to York students, is also a product of an external partnership. However, while the ESSENCE was a York-led satellite relying on hardware from other institutions, a University of Manitoba-led CubeSat project draws on innovative hardware provided by Lassonde students.

Supervised by Regina Lee, professor of space engineering, a team of students was asked by the University of Manitoba CubeSat team – who named their satellite “IRIS” – to create a critical component to help realize the partner school’s CubeSat goal of consistently exposing geological samples to solar radiation in space and study the effects.

Regina Lee
Regina Lee

“Our job was to design the subsystem to go into their satellite that would figure out which direction it’s pointing in within space, and make sure it’s pointing to the sun,” explains Ryan Clark, who worked on the project, and is a former member of the Nanosatellite Research Laboratory at York.

“They set a general guideline for the hardware component development, and our contribution was the sun sensor, magnetorquers and then the board that contains the full Attitude Determination and Control System that fits on the CubeSat,” says Peter Keum, who was part of the team.

Lastly: “We were focused on testing, calibrating and – once we were done – shipping it off,” says Gabriel Chianelli, the remaining member of the team, who is part of the Nanosatellite Search Group at York.

The two CubeSats – the ESSENCE and IRIS – are now being readied for their space-bound journey, and both teams are preparing to see them launched this summer. Zhu and 20 of his students are planning to travel to the Kennedy Space Station Center to witness the launch, some of them from within a NASA VIP room that is only five kilometers away from the launch pad. Others, like Lee’s team, will eagerly be watching via YouTube livestreams.

For both professors behind the work on the two satellites, the launch will mark the fruition of a desire to see their students work on something that won’t just make it to space, but impact their futures. “My goal was to make sure that my students have hands-on experience so they can graduate and do well in their career,” Lee says. Zhu shares that sentiment. “I have a passionate love for space engineering, and I like my students to have the same life experience I do,” he says.

Projects like the ESSENCE might be the first satellite to be designed and built mainly by undergraduate students at York, but it’s unlikely to be the last. “When I was an undergrad, starting to 2014, there were no internships or placements for undergrad space students,” Clark says. “Now, there are so many more placements, so many opportunities available, it seems like just the barriers to entry are coming down, and a lot more people are getting into space.”

Centre for Bee Ecology, Evolution and Conservation hosts garden party for World Bee Day

Macro photo of green metallic sweat bee perched on a yellow flower

The Centre for Bee Ecology, Evolution and Conservation (BEEc) will once again mark the annual United Nations World Bee Day with new events designed to promote the health of local pollinators.

This year, for the first time, BEEc and the Faculty of Environmental & Urban Change (EUC) welcome all members of the University community to the EUC Native Plant Garden party on May 16 from 2:30 to 5 p.m.

World Bee Day, led internationally by the Food and Agricultural Organization of the United Nations (FAO), is dedicated to acknowledging and spreading awareness of the plethora of vital environmental processes that depend on the often underappreciated work of Earth’s busy bees.

“Bees are one of the most important groups of pollinators in the world, yet most people are unaware that we have at least 350 species in the GTA alone,” explains BEEc Coordinator Victoria MacPhail. “The EUC Native Plant Garden is an oasis for them on a campus full of concrete and buildings, providing food, shelter and nesting sites throughout the year.”

Observed around the world on Saturday, May 20, this year World Bee Day will arrive early at York in order to allow for the participation of as many interested community members as possible.

“We’re excited to celebrate World Bee Day a few days early with the whole York University community, to take this opportunity to share our love and knowledge of bees with others,” MacPhail says. “We have a wealth of free resources and are happy to chat with people about what they can do to help pollinators, from planting native flowers to advocating for increased protections.”

A lush planter box full of a variety of species of wild flowers
One of the EUC native species planter boxes to be maintained for World Bee Day

The featured garden party event is sponsored in part by World Wildlife Fund (WWF) Canada and is open to all staff, students and faculty, as well as members of the public from outside of the University. Attendees will learn from York’s expert mellitologists, as well as free handouts, pinned insect displays, example bee nests and more, about the highly diverse bee species indigenous to Toronto and Southern Ontario at large, as well as the local flora that they depend on for sustenance. As a part of this hands-on learning experience, guests will be able to contribute to the University’s floral biodiversity by planting new native species in the EUC garden and removing invasive species that are less conducive to the health of local pollinators.

“We’re so thrilled to invigorate our relationship and stewardship of this wonderful garden started by [Professors] Gerde Werkerle and Leesa Fawcett, among others, with the partnership of BEEc. Hundreds of students pass by or attend summer classes in this rooftop garden sitting atop lecture halls and we want them to come to know this lively oasis of over 40 species – some of them edible. May 16 will be a great start to what we anticipate will be an amazing season,” says Phyllis Novak, director of the EUC Maloca Community and Native Plant Gardens.

York community members who intend to join in the gardening are asked to RSVP here by Friday, May 12. Members of the public are encouraged to drop in to this event and are not required to register. No prior experience or personal equipment is required to join in the gardening. Participants are encouraged to dress for the elements as this event will run rain or shine.

MacPhail says gardening volunteers can expect to “see examples of bee species – from tiny, smooth, black solitary bees that are only a few millimeters long and can be mistaken for flies or ants, to the large, fuzzy bumblebees that can be up to a couple centimeters in size, and whose queens are easily seen this time of year.

“Toronto’s official bee, the green metallic sweat bee – or Agapostemon virescens – has already been seen nesting in the garden, and we are confident that the upcoming garden party will help to improve the habitat for it and many other wildlife species,” she adds.

Additional BEEc-hosted events will run following the garden party and in the lead up to the official World Bee Day, including a cocktail fundraiser to help endow a fund for EUC graduate students studying bees on May 17 in Markham, as well as a Scholars’ Hub virtual seminar on May 18 detailing the leading-edge research on bees being carried out at York.

For more information on these supplemental Bee Day events, contact beec@yorku.ca or see the BEEc news and social media page.